MIDI Implementation

Model: TD-02
Date: Dec. 21, 2022
Version: 1.00

* In this implementation, the order in which the TD-02's buttons should be pressed is indicated in the following way. For example, [MENU]-[MIDI] means "press the [MENU] button, then press the [<],[>] buttons to select [MIDI], and finally press the [ENTER] button." For details, refer to the TD-02 owner's manual.
* For button names, refer to the TD-02 owner's manual.

1. Receive Data

■Channel Voice Messages

* The following Channel Voice Messages can be received by the channel assigned in [MENU]-[MIDI] Channel.
* Not received when [MENU]-[MIDI] Tx/Rx Sw is set to "OFF."
- Note On

Status	2nd byte	3rd byte
9 nH	kkH	vvH

$\mathrm{n}=\mathrm{MIDI}$ channel number: 0H-FH (ch.1-ch.16)

kk $=$ note number:	$00 \mathrm{H}-7 \mathrm{FH}(0-127)$
vv $=$ note on velocity:	$01 \mathrm{H}-7 \mathrm{FH}(1-127)$

* Only the note numbers assigned by the kit are received. Note Numbers can be assigned in [MENU]-[MIDI]-[NOTE NO.].
-Polyphonic Key Pressure

Status	2nd byte	3rd byte
AnH	kkH	vvH

$\mathrm{n}=\mathrm{MIDI}$ channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)
kk $=$ note number: $\quad 00 \mathrm{H}-7 \mathrm{FH}(0-127)$
vv $=$ value: $\quad 00 \mathrm{H}-7 \mathrm{FH}$ ($0-127$)

* Only the note numbers assigned by the kit are received.

Note Numbers can be assigned in [MENU]-[MIDI]-[NOTE NO.].

* If the value is greater than 1, the decay of the note sounded by the received note number will be shortened based on the value (used in choking).
-Control Change
oFoot Controller (Controller number 4)

Status	2nd byte	3rd byte
BnH	04 H	vvH

$\mathrm{n}=\mathrm{MIDI}$ channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)
vv = Control value: $\quad 00 \mathrm{H}-5 \mathrm{AH}$ (0-90: open to closed)

* Changes the position of the hi-hat control pedal.
-Program Change
Status 2nd byte

CnH ppH
$\mathrm{n}=$ MIDI channel number: 0H-FH (ch.1-ch.16)
$\mathrm{pp}=$ Program number: 00H-7FH (prog.1-prog.128)

* Not Received when [MENU]-[MIDI] ProgChg Rx is set to "OFF."
* The sound changes starting with a new note-on that follows program change reception. A voice that was already sounding before the program change was received is not affected.

■Channel Mode Messages

* The following Channel Voice Messages can be received in [MENU]-[MIDI] Channel.
* Not received when [MENU]-[MIDI] Tx/Rx Sw is set to "OFF."
-All Sounds Off (Controller number 120)

Status	2nd byte	3rd byte
BnH	78 H	00 H

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)

* When this message is received, all currently-sounding notes on the corresponding channel will be silenced. However, the status of channel messages will not change.
-Reset All Controllers (Controller number 121)
Status 2nd byte 3rd byte

BnH 79H 00H
$\mathrm{n}=$ MIDI channel number: 0H-FH (ch.1-ch.16)

* When this message is received, polyphonic key pressure for all pads assigned to the same channel number is reset to 0.
-All Notes Off (Controller number 123)

Status	2nd byte	3rd byte
BnH	7 BH	00 H

$\mathrm{n}=\mathrm{MIDI}$ channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)

* The same processing will be carried out as when All Sounds Off is received.
-OMNI OFF (Controller number 124)

Status	2nd byte	3rd byte
BnH	7 CH	00 H

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)

* The same processing will be carried out as when All Sounds Off is received.
-OMNI ON (Controller number 125)

Status	2nd byte	3rd byte
BnH	7 DH	00 H

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)

* The same processing will be carried out as when All Sounds Off is received.
-MONO (Controller number 126)

Status	2nd byte	3rd byte
BnH	7 EH	mmH

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)
$\mathrm{mm}=$ mono number: $\quad 00 \mathrm{H}-10 \mathrm{H}(0-16)$

* The same processing will be carried out as when All Sounds Off is received.

```
\bulletPOLY (Controller number 127)
\begin{tabular}{lll} 
Status & 2nd byte & 3rd byte \\
BnH & \(7 F H\) & 00 H
\end{tabular}
\(\mathrm{n}=\) MIDI channel number: \(0 \mathrm{H}-\mathrm{FH}\) (ch.1-ch.16)
* The same processing will be carried out as when All Sounds Off is received.
```

■System Exclusive Message

This device receives the following system exclusive messages: universal non-realtime system exclusive messages, data request (RQ1), and data set (DT1).
\bullet Universal Non-realtime System Exclusive Messages
oIdentity Request Message

Status	Data byte	Status
F0H	7EH, dev, 06H, 01H	
Byte	Explanation	
F0H	Exclusive status	
7 EH	ID number (Universal Non-realtime Message)	
dev	Device ID (10H-1FH (17-32), 7FH)	
	Initial value is 10H (17)	
$06 H$	Sub ID\#1 (General Information)	
$01 H$	Sub ID\#2 (Identity Request)	
F7H	EOX (End Of Exclusive)	

* When Identity Request is received, Identity Reply message will be transmitted.
* The [MENU]-[MIDI] Device ID setting is used as the Device ID.
-Data Transmission

This instrument can use exclusive messages to exchange many varieties of internal settings with other devices. The model ID of the exclusive messages used by this instrument is 00 H 00 H 00 H 00 H 1 EH .
oData Request 1 (RQ1)

This message requests the other device to transmit data. The address and size indicate the type and amount of data that is requested. When a Data Request message is received, if the device is in a state in which it is able to transmit data, and if the address and size are appropriate, the requested data is transmitted as a Data Set 1 (DT1) message. If the conditions are not met, nothing is transmitted.
41H, dev, $00 \mathrm{H}, 00 \mathrm{H}, 00 \mathrm{H}, \mathrm{F} 7 \mathrm{H}$
$00 \mathrm{H}, 1 \mathrm{EH}, 11 \mathrm{H}, \mathrm{aaH}, \mathrm{bbH}$,
$\mathrm{ccH}, \mathrm{ddH}, \mathrm{ssH}, \mathrm{ttH}, \mathrm{uuH}$,

```
vvH, sum
Command ID (RQ1)
Address MSB
```

byte Explanation
F0H Exclusive status
41H ID number (Roland)
dev device ID (dev: 10H-1FH, 7FH)
00H Model ID\#1 (TD-02)
00 H Model ID\#2 (TD-02)
00H Model ID\#3 (TD-02)
00H Model ID\#4 (TD-02)
1EH Model ID\#5 (TD-02)
11H
aaH
bbH Address
ccH Address
ddH Address LSB
ssH Size MSB
ttH Size
uuH Size
vvH Size LSB
sum Checksum
F7H EOX (End Of Exclusive)

* The size of data that can be transmitted at one time is fixed for each type of data. And data requests must be made with a fixed starting address and size. Refer to the address and size given in "3. Parameter Address Map."
* For the checksum, refer to "How to calculate the checksum."
oData Set 1 (DT1)

These messages are used for transmitting the actual data and are used when you want to assign data to the device.

* The amount of data that can be transmitted at one time depends on the type of data, and data will be transmitted from the specified starting address and size. Refer to the address and size given in "3. Parameter Address Map."
* Data larger than 256 bytes must be divided into packets of 256 bytes or less, and each packet must be sent at an interval of about 20 ms or longer.
* For the checksum, refer to "How to calculate the checksum."

2. Transmit Data

■Channel Voice Messages

* The following channel voice messages are transmitted on the channel specified as the [MENU]-[MIDI] Channel.
* Not transmitted when [MENU]-[MIDI] Tx/Rx Sw is set to "OFF."

- Note Off

Status	2nd byte	3rd byte
8 nH	kkH	vvH

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)
kk = note number: 00H-7FH (0-127)
vv = Note off velocity: 40H (64) fixed

* A note-off is transmitted 0.1 seconds after you strike a pad or use the hi-hat control pedal to play a foot close (splash).
-Note On

Status	2nd byte	3rd byte
$9 n H$	kkH	vvH
$\mathrm{n}=$ MIDI channel number: $: 0 \mathrm{H}-\mathrm{FH}$	$(\mathrm{ch} .1-\mathrm{ch} .16)$	
$\mathrm{kk}=$ note number:	$00 \mathrm{H}-7 \mathrm{FH}(0-127)$	
$\mathrm{vv}=$ Note on velocity:	$01 \mathrm{H}-7 \mathrm{FH}(1-127)$	

* The note number assigned by the kit is transmitted when you strike a pad or use the hi-hat control pedal to play a foot-close (splash).
* If the [MENU]-[PAD] XStickSens is not "OFF," and you play the SNARE pad using the cross-stick technique, the note number assigned by [MENU]-[[MIDI]-[MIDI NOTE] SNR Xs is transmitted.
* The note number that is transmitted when you strike the hi-hat pad (open or closed) is switched depending on how deeply the hi-hat pedal is being pressed.
-Polyphonic Key Pressure

* On the channel to which the pad is assigned, 7FH will be transmitted when the rim of the pad is pressed and 00H will be transmitted when the rim is released, for the note number specified for the head and rim. (When using a choking compatible pad and [MENU]-[PAD] Type is set to the corresponding pad.)
- Control Change
oFoot Controller (Controller number 4)

Status	2nd byte	3rd byte
BnH	04 H	vvH

$\mathrm{n}=$ MIDI channel number: $0 \mathrm{H}-\mathrm{FH}$ (ch.1-ch.16)
vv $=$ Control value: $\quad 00 \mathrm{H}-5 \mathrm{AH}$ (0-90: open to closed)

* Transmitted when you operate the hi-hat control pedal.

When you strike the HI-HAT pad, this message is transmitted as pedal position data before the note-on.

-Program Change

* When Identity Request is received, the above Identity Reply messages will be transmitted.
* The [MENU]-[MIDI] Device ID setting is used as the Device ID.
oData Set 1 (DT1)

These messages are used for transmitting the actual data and are used when you want to assign data to the device.

Status	Data byte	Status
FOH	```41H, dev, 00H, 00H, 00H, 00H, 1EH, 12H, aaH, bbH, ccH, ddH, eeH, ... ffH, sum```	F7H
Byte	Explanation	
FOH	Exclusive status	
41H	ID number (Roland)	
dev	Device ID (dev: 10H-1FH, 7FH)	
00 H	Model ID\#1 (TD-02)	
00 H	Model ID\#2 (TD-02)	
00 H	Model ID\#3 (TD-02)	
00 H	Model ID\#4 (TD-02)	
1EH	Model ID\#5 (TD-02)	
12 H	Command ID (DT1)	

aaH	Address MSB
bbH	Address
ccH	Address
ddH	Address LSB
eeH	Data: The actual data to be sent. Multiple bytes of data are transmitted in order starting
from the address.	$:$
$:$	Data
ffH	Checksum
sum	EOX (End Of Exclusive)
F7H	

* The amount of data that can be transmitted at one time depends on the type of data, and data will be transmitted from the specified starting address and size. Refer to the address and size given in "3. Parameter Address Map."
* Data larger than 256 bytes will be divided into packets of 256 bytes or less, and each packet will be sent at an interval of about 20 ms .

3. Parameter Address Map

* Transmission of "\#" marked address is divided to multiple packets. For example, ABH in hexadecimal notation will be divided to 0 AH and 0 BH , and is sent/received in this order.

Start	Description	[Current]	
Address			
00000000 \| Current			
\| 01000000	Setup		[Setup]
\| 02000000	Trigger		[Trigger]

* [Setup]

* [Trigger]

The assignments to each trigger within the [Trig] are as follows.
KICK 1

SNARE 2
TOM1 3
TOM2 4
TOM3 5

HI-HAT 6
CRASH1 7

* [TrigMisc]

4. Supplementary Material

■Decimal and Hexadecimal Table
(An " H " is appended to the end of numbers in hexadecimal notation.)

In MIDI documentation, data values and addresses/sizes of exclusive messages etc. are expressed as hexadecimal values for each 7 bits.

The following table shows how these correspond to decimal numbers (in the case of hexadecimal values for each 7 bits, or positive hexadecimal values for each 4 bits.)

```
+------+-----++-----+-----++-----+-----++---------------
| D | H || D | H || D | H || D | H |
```

0	00H	\|		32	20 H		64	40H		96	60H		
1	01H	\|		33	21H	\|		65	41H	\|		97	61H
2	02H	\|		34	22 H	\|		66	42 H	\|		98	62 H
3	03H	\|		35	23 H	\|		67	43H	\|		99	63H
4	04H	\|		36	24H	\|		68	44H	\|		100	64H
5	05H	\|		37	25 H	11	69	45H	11	101	65H		
6	06H	\|		38	26H	11	70	46 H	11	102	66H		
7	07H	\|		39	27H	\|		71	47H	11	103	67H	
8	08H	\|		40	28 H	\|		72	48 H	\|		104	68H
9	09H	\|		41	29 H	\|		73	49 H	11	105	69H	
10	0AH	11	42	2AH	\|		74	4AH	\|		106	6AH	
11	0BH	\|		43	2BH	\|		75	4BH	11	107	6BH	
12	0CH	\|		44	2 CH	\|		76	4 CH	11	108	6 CH	
13	0DH	\|		45	2DH	\|		77	4DH	11	109	6DH	
14	OEH	\| 1	46	2EH	\|		78	4EH	11	110	6EH		
15	0FH	1	47	2FH	\|		79	4FH	\|		111	6FH	
16	10H	\|		48	30 H	\|	80	50H	11	112	70 H		
17	11H	1	49	31H	\|		81	51H	11	113	71H		
18	12H	\|		50	32 H	\|		82	52 H	11	114	72 H	
19	13H	\|		51	33 H	\|		83	53H	11	115	73H	
20	14H	$1 \mid$	52	34 H	\|		84	54H	11	116	74H		
21	15H	\|		53	35H	\|		85	55H	11	117	75H	
22	16H	11	54	36H	\|		86	56H	11	118	76H		
23	17H	\|		55	37H	\|		87	57H	11	119	77H	
24	18H	\|		56	38 H	\|		88	58H	\| 1	120	78 H	
25	19H	\|		57	39 H	11	89	59H	\| 1	121	79H		
26	1AH	1	58	3AH	\|		90	5AH	11	122	7АН		
27	1BH	\|		59	3BH	1	91	5BH	11	123	7BH		
28	1-H	\|		60	3 CH	11	92	5 CH	\|		124	7CH	
29	1DH	\|		61	3DH	11	93	5DH	$1 \mid$	125	7DH		
30	1EH	\|		62	3EH	11	94	5EH	\|		126	7EH	
31	1FH	\|		63	3FH	11	95	5FH	\|		127	7FH	

D: decimal
H: hexadecimal

* Decimal values such as MIDI channel, bank select, and program change are listed as one greater than the values given in the above table.
* A 7-bit byte in hexadecimals can express data in the range of 128 steps. For data where greater precision is required, we must use two or more bytes. For example, two hexadecimal numbers aa bbH expressing two 7-bit bytes would indicate a value of aa $\times 128+$ bb.
* In the case of data to which multiple addresses are assigned, a hexadecimal value is used for each four bits. A value 0a 0 bH expressed as two-byte nibbles will be a x $16+\mathrm{b}$.
* For values with a \pm sign, $00 \mathrm{H}=-64,40 \mathrm{H}= \pm 0$, and $7 \mathrm{FH}=+63$. When expressing these values as decimal expressions, we use values that are 64 less than the values in the decimal table above. In the case of a two-byte value, $0000 \mathrm{H}=$ $-8192,4000 \mathrm{H}= \pm 0$, and $7 \mathrm{~F} 7 \mathrm{FH}=+8191$. For example, aa bbH expressed in decimal would be aa bbH $-4000 \mathrm{H}=\mathrm{aa} \times 128$ +bb - 64×128.
<Example 1 >What is the decimal expression of 5AH?

From the preceding table, $5 \mathrm{AH}=90$
<Example $2>$ What is the decimal expression of the value 1234 H given as hexadecimal for each 7 bits?

From the preceding table, since they are $12 \mathrm{H}=18$ and $34 \mathrm{H}=52$,
$18 \times 128+52=2356$

■Examples of Actual MIDI Messages
<Example 1> 92 3E 5F

9 nH is the Note-on status, and n is the MIDI channel number. Since $2 \mathrm{H}=2,3 \mathrm{EH}=62$, and $5 \mathrm{FH}=95$, this is a Note-on message with MIDI CH = 3, note number 62 (note name is D4), and velocity 95.
<Example 2> C9 20

CnH is the Program Change status, and n is the MIDI channel number. Since $9 \mathrm{H}=9$ and $20 \mathrm{H}=32$, this is a Program Change message with MIDI CH = 10, program number 33.
<Example 3> B9 04 5A 99 2C 7F B9 04 2D
$9 n$ is the Note-on status, and n is the MIDI channel number. BnH is the Control Change status, and n is the MIDI channel number. Thus, the above messages have the following meaning.
B9 04 5A MIDI ch. 10, foot controller: 5AH
99 2C 7F MIDI ch. 10, Note On message
B9 04 2D MIDI ch. 10, foot controller: 2DH

In other words, with these messages a Note On message with a note number of 44 (G\#2) and velocity of 127 is transmitted on MIDI Channel 10, and then the foot controller value is set from 90 to 45.
According to the settings made at the factory, the drum part is assigned to MIDI Channel 10, Note Number 44 is assigned to the pedal hi-hat, and the foot controller is set to Pedal CC; in this case, the TD-02 plays a foot splash when the message is received.

Examples of Exclusive Messages and Checksum Calculation
When transmitting Roland exclusive messages (DT1), a checksum is added following the data (before F7) so that the receiving device can check whether the message was received correctly.
The checksum value is determined by the address and data of the exclusive message that is transmitted.

- How to calculate the checksum
(An "H" is appended to the end of numbers in hexadecimal notation.)
The checksum is a value derived by adding the address, data and checksum itself and inverting the lower 7 bits. Here's an example of how the checksum is calculated. We will assume that in the exclusive message we are transmitting, the address is aa bb cc ddH and the data is ee ff gg hhH.
$a a+b b+c c+d d+e e+f f+g g+h h=s u m$
sum / 128 = quotient ... remainder
128 - remainder = checksum
(However, the checksum will be 0 if the remainder is 0.)
<Example 1> Setting the SNARE Type to PDX12
According to the Parameter Address Map, the Trigger's start address is 02000000 H , Trigger 2 's offset address is 00 0200 H , and the Type's offest address is 0000 H ; thus, the address is

```
    0 2 0 0 0 0 ~ 0 0 H
        00 02 00H
+) 00 00H
```

02000200 H

Since the PDX12's parameter is 00 15H

| F0 | 41 | 10 | $000000001 E$ | 12 | 02000200 | 15 | ?? |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (1) | (2) | (3) | (4) | (5) | address | data | checksum(6) |

(1) Exclusive Status
(2) ID (Roland)
(3) Device ID (17)
(4) Model ID (TD-02)
(5) Command ID (DT1)
(6) EOX

Then calculate the checksum.
$02 \mathrm{H}+00 \mathrm{H}+02 \mathrm{H}+00 \mathrm{H}+15 \mathrm{H}=2+0+2+0+21=25$ (sum)
25 (sum) $\div 128=0$ (quotient) ... 25 (remainder) checksum = $128-25$ (remainder) $=103=67 \mathrm{H}$
This means F0 411000000000 1E 12020002001567 F7 is the message that should be sent.
<Example 2> Requesting the transmission of the metronome's pan
According to the Parameter Address Map, the Setup's start address is 01000000 H , the metronome parameter's offset address is 000000 H , the pan's offset address is 0001 H ; therefore, the address is

010000 01H

Since the size is 00000001 H

Then calculate the checksum.
$01 \mathrm{H}+00 \mathrm{H}+00 \mathrm{H}+01 \mathrm{H}+00 \mathrm{H}+00 \mathrm{H}+00 \mathrm{H}+02 \mathrm{H}=1+0+0+1+0+0+0+2=4$ (sum)
4 (sum) $\div 128=0$ (quotient) ... 4 (remainder) checksum = $128-4$ (remainder) $=124=7 \mathrm{CH}$
This means F0 411000000000 1E $1101000001000000027 C$ F7 is the message that should be sent.
5. MIDI Implementation Chart

